EE 508 Lecture 22

Sensitivity Functions

- Comparison of Circuits
- Predistortion and Calibration

Theorem: If all op amps in a filter are ideal, then ω_{0}, Q, BW, all band edges, and all poles and zeros are homogeneous of order 0 in the impedances.

Theorem: If all op amps in a filter are ideal and if $T(s)$ is a dimensionless transfer function, $\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{j} \omega),|\mathrm{T}(\mathrm{j} \omega)|, \angle \mathrm{T}(\mathrm{j} \omega)$, are homogeneous of order 0 in the impedances

Review from last time

Bilinear Property of Electrical Networks

Theorem: Let x be any component or Op Amp time constant ($1^{\text {st }}$ order Op Amp model) of any linear active network employing a finite number of amplifiers and lumped passive components. Any transfer function of the network can be expressed in the form

$$
T(s)=\frac{N_{0}(s)+x N_{1}(s)}{D_{0}(s)+x D_{1}(s)}
$$

where N_{0}, N_{1}, D_{0}, and D_{1} are polynomials in s that are not dependent upon x

A function that can be expressed as given above is said to be a bilinear function in the variable x and this is termed a bilateral property of electrical networks.

The bilinear relationship is useful for

1. Checking for possible errors in an analysis
2. Pole sensitivity analysis

Root Sensitivities

Consider expressing $\mathrm{T}(\mathrm{s})$ as a bilinear fraction in x

$$
T(s)=\frac{N_{0}(s)+x N_{1}(s)}{D_{0}(s)+x D_{1}(s)}=\frac{N(s)}{D(s)}
$$

Theorem: If z_{i} is any simple zero and/or p_{i} is any simple pole of $T(s)$, then

$$
S_{x}^{z_{i}}=\left(\frac{x}{z_{i}}\right)\left(\frac{-N_{1}\left(z_{i}\right)}{d N\left(z_{i}\right)} \frac{\text { and }}{d z_{i}}\right) \quad S_{x}^{p_{i}}=\left(\frac{x}{p_{i}}\right)\left(\frac{-D_{1}\left(p_{i}\right)}{d D\left(p_{i}\right)} \frac{d p_{i}}{d}\right)
$$

Note: Do not need to find expressions for the poles or the zeros to find the pole and zero sensitivities !
Note: Do need the poles or zeros but they will generally be known by design
Note: Will make minor modifications for extreme values for x (i.e. T for op amps)

Root Sensitivities

Theorem: If p_{i} is any simple pole of $T(s)$, then

$$
\mathrm{S}_{\mathrm{x}}^{\mathrm{p}_{\mathrm{i}}}=\left(\frac{\mathrm{x}}{\mathrm{p}_{\mathrm{i}}}\right)\left(\frac{-\mathrm{D}_{1}\left(\mathrm{p}_{\mathrm{i}}\right)}{d \mathrm{D}\left(\mathrm{p}_{\mathrm{i}}\right)}\right)
$$

Proof (similar argument for the zeros)

$$
D(s)=D_{0}(s)+x D_{1}(s)
$$

By definition of a pole,

$$
\begin{gathered}
\mathrm{D}\left(\mathrm{p}_{\mathrm{i}}\right)=0 \\
\therefore \quad \mathrm{D}\left(\mathrm{p}_{\mathrm{i}}\right)=\mathrm{D}_{0}\left(\mathrm{p}_{\mathrm{i}}\right)+x \mathrm{D}_{1}\left(\mathrm{p}_{\mathrm{i}}\right)=0
\end{gathered}
$$

Root Sensitivities

$$
\therefore \quad D\left(p_{i}\right)=D_{0}\left(p_{i}\right)+x D_{1}\left(p_{i}\right)
$$

Differentiating this expression implicitly WRT x , we obtain

$$
\frac{\partial \mathrm{D}_{0}\left(\mathrm{p}_{\mathrm{i}}\right)}{\partial \mathrm{p}_{\mathrm{i}}} \frac{\partial \mathrm{p}_{\mathrm{i}}}{\partial \mathrm{x}}+\left[\mathrm{x} \frac{\partial \mathrm{D}_{1}\left(\mathrm{p}_{\mathrm{i}}\right)}{\partial \mathrm{p}_{\mathrm{i}}} \frac{\partial \mathrm{p}_{\mathrm{i}}}{\partial \mathrm{x}}+\mathrm{D}_{1}\left(\mathrm{p}_{\mathrm{i}}\right)\right]=0
$$

Re-grouping, obtain

$$
\frac{\partial p_{i}}{\partial x}\left[\frac{\partial D_{0}\left(p_{i}\right)}{\partial p_{i}}+x \frac{\partial D_{1}\left(p_{i}\right)}{\partial p_{i}}\right]=-D_{1}\left(p_{i}\right)
$$

But term in brackets is derivative of $D\left(p_{i}\right)$ wrt p_{i}, thus

$$
\frac{\partial p_{i}}{\partial x}=-\frac{D_{1}\left(p_{i}\right)}{\left(\frac{\partial D\left(p_{i}\right)}{\partial p_{i}}\right)}
$$

Root Sensitivities
 $$
\frac{\partial p_{i}}{\partial x}=-\frac{D_{1}\left(p_{i}\right)}{\left(\frac{\partial D\left(p_{i}\right)}{\partial p_{i}}\right)}
$$

Finally, from the definition of sensitivity,

$$
S_{x}^{p_{i}}=\frac{x}{p_{i}} \frac{\partial p_{i}}{\partial x}=-\left(\frac{x}{p_{i}}\right) \frac{D_{1}\left(p_{i}\right)}{\left(\frac{\partial D\left(p_{i}\right)}{\partial p_{i}}\right)}
$$

Root Sensitivities

$$
S_{x}^{p_{i}}=\frac{x}{p_{i}} \frac{\partial p_{i}}{\partial x}=-\left(\frac{x}{p_{i}}\right) \frac{D_{1}\left(p_{i}\right)}{\left(\frac{\partial D\left(p_{i}\right)}{\partial p_{i}}\right)}
$$

Observation: Although the sensitivity expression is readily obtainable, direction information about the pole movement is obscured because the derivative is multiplied by the quantity p_{i} which is often complex. Usually will use either

$$
s_{x}^{\mathrm{p}_{\mathrm{i}}}=\frac{\partial \mathrm{p}_{\mathrm{i}}}{\partial \mathrm{x}}
$$

or

$$
\tilde{S}_{x}^{p_{i}}=\frac{x}{\left|p_{i}\right|} \frac{\partial p_{i}}{\partial x}=-\left(\frac{x}{\left|p_{i}\right|}\right) \frac{D_{1}\left(p_{i}\right)}{\left(\frac{\partial D\left(p_{i}\right)}{\partial p_{i}}\right)}
$$

which preserve direction information when working with pole or zero sensitivity analysis.

Root Sensitivities

Summary: Pole (or zero) locations due to component variations can be approximated with simple analytical calculations without obtaining parametric expressions for the poles (or zeros).

$$
\begin{aligned}
& \left.p_{i} \simeq p_{i}\right|_{\text {comeal }} ^{\text {componens }} \mid \\
& \text { where } \\
& \Delta \mathrm{p}_{\mathrm{i}} \simeq \Delta x \bullet s_{x}^{\mathrm{p}_{\mathrm{i}}} \\
& \boldsymbol{s}_{x}^{\mathrm{p}_{\mathrm{i}}}=-\frac{\mathrm{D}_{1}\left(\mathrm{p}_{\mathrm{i}}\right)}{\left.\left(\frac{\partial \mathrm{D}\left(\mathrm{p}_{\mathrm{i}}\right)}{\partial \mathrm{p}_{\mathrm{i}}}\right)\right|_{\mathrm{p}_{\mathrm{N}}}} \quad \text { and } \\
& D(s)=D_{0}(s)+x \cdot D_{1}(s)
\end{aligned}
$$

Alternately,

$$
\Delta p_{i} \simeq\left(\left|p_{i}\right| \frac{\Delta x}{x}\right) \tilde{S}_{x}^{p_{i}}
$$

Example: Determine $\widetilde{S}_{R_{1}}^{p_{i}}$ for the +KRC Lowpass Filter for equal R, equal C

evaluate at $\mathrm{T}=0$

$$
\begin{aligned}
& \text { e at } \mathrm{T}=0 \\
& \mathrm{~T}(\mathrm{~s})=\frac{\frac{\mathrm{K}_{0}}{\mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}{\left(\mathrm{~s} \frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}\right)+\mathrm{R}_{1}\left[\mathrm{~s}^{2}+\mathrm{s}\left[\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1}}+\frac{\left(1-\mathrm{K}_{0}\right)}{\mathrm{R}_{2} \mathrm{C}_{2}}\right]\right]}
\end{aligned}
$$

Example: Determine $\widetilde{S}_{R_{1}}^{p_{1}}$ for the +KRC Lowpass Filter for equal R, equal C

$$
\begin{aligned}
& \text { (} \\
& \mathrm{T}(\mathrm{~s})=\frac{\mathrm{N}_{0}(\mathrm{~s})+\mathrm{xN} \mathrm{~N}_{1}(\mathrm{~s})}{\mathrm{D}_{0}(\mathrm{~s})+\mathrm{xD} \mathrm{D}_{1}(\mathrm{~s})} \\
& \tilde{S}_{x}^{p_{i}}=\frac{\mathbf{x}}{\left|p_{i}\right|} \frac{\partial p_{i}}{\partial x}=-\left(\frac{\mathbf{x}}{\left|p_{i}\right|}\right) \frac{D_{1}\left(p_{i}\right)}{\left(\frac{\partial D\left(p_{i}\right)}{\partial p_{i}}\right)} \\
& \mathrm{T}(\mathrm{~s})=\frac{\frac{\mathrm{K}_{0}}{R_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}{\left(\mathrm{~s} \frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}\right)+\mathrm{R}_{1}\left[\mathrm{~s}^{2}+\mathrm{s}\left[\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1}}+\frac{\left(1-\mathrm{K}_{0}\right)}{\mathrm{R}_{2} \mathrm{C}_{2}}\right]\right]} \quad \mathrm{D}_{1}(\mathrm{~s})=\mathrm{s}^{2}+\mathrm{s}\left[\frac{1}{\mathrm{R}_{2} \mathrm{C}_{1}}+\frac{\left(1-\mathrm{K}_{0}\right)}{\mathrm{R}_{2} \mathrm{C}_{2}}\right] \\
& D(s)=\left(s \frac{1}{C_{1}}+\frac{1}{R_{2} C_{1} C_{2}}+\frac{1}{R_{2} C_{1} C_{2}}\right)+R_{1}\left[s^{2}+s\left[\frac{1}{R_{2} C_{1}}+\frac{\left(1-K_{0}\right)}{R_{2} C_{2}}\right]\right]=R_{1}\left(s^{2}+s\left[\frac{\omega_{0}}{Q}\right]+\omega_{0}^{2}\right) \\
& \widetilde{S}_{R_{1}}^{p}=\frac{x}{\left|p_{i}\right|} \frac{\partial p_{i}}{\partial x}=-\left(\frac{1}{\left|p_{i}\right|}\right) \frac{p^{2}+p\left[\frac{1}{R_{2} C_{1}}+\frac{\left(1-K_{0}\right)}{R_{2} C_{2}}\right]}{\left(2 p_{i}+\frac{\omega_{0}}{Q}\right)}
\end{aligned}
$$

Example: Determine $\tilde{S}_{R_{1}}^{p_{i}}$ for the +KRC Lowpass Filter for equal R, equal C

Example: Determine $\widetilde{S}_{R_{1}}^{p_{1}}$ for the +KRC Lowpass Filter for equal R, equal C

$$
\tilde{S}_{x}^{p_{i}}=\frac{x}{p_{i} \mid} \frac{\partial p_{i}}{\partial x}=\left(\frac{1}{\omega_{0}}\right) \frac{\omega_{0}^{2}+p \frac{1}{\left(2 p_{i}+\frac{\omega_{0}}{Q}\right)}}{\left(C_{1}\right)}
$$

For equal R, equal $C \quad \omega_{0}=\frac{1}{R C}$

$$
\tilde{S}_{R_{1}}^{p}=\frac{x}{\left|p_{i}\right|} \frac{\partial p_{i}}{\partial x}=\left(\frac{1}{\omega_{0}}\right) \frac{\omega_{0}^{2}+p \omega_{0}}{\left(2 p_{i}+\frac{\omega_{0}}{Q}\right)}
$$

$$
\tilde{S}_{R_{1}}^{p}=\frac{\omega_{0}-\frac{\omega_{0}}{2 Q} \pm \frac{\omega_{0}}{2 Q} \sqrt{1-4 Q^{2}}}{ \pm \frac{\omega_{0}}{Q} \sqrt{1-4 Q^{2}}}
$$

$$
\tilde{S}_{R_{1}}^{p}=\frac{x}{\left|p_{i}\right|} \frac{\partial p_{i}}{\partial x}=\frac{\omega_{0}+p}{\left(2 p+\frac{\omega_{0}}{Q}\right)}
$$

$$
\tilde{S}_{R_{1}}^{p}=\frac{Q-\frac{1}{2} \pm \frac{1}{2} \sqrt{1-4 Q^{2}}}{ \pm \sqrt{1-4 Q^{2}}}
$$

Example: Determine $\tilde{S}_{R_{1}}^{p_{i}}$ for the +KRC Lowpass Filter for equal R, equal C

$$
\tilde{S}_{x}^{p_{i}}=\frac{x}{\left|p_{i}\right|} \frac{\partial p_{i}}{\partial x}
$$

For equal R, equal C

$$
\tilde{S}_{R_{1}}^{p}=\frac{Q-\frac{1}{2} \pm \frac{1}{2} \sqrt{1-4 Q^{2}}}{ \pm \sqrt{1-4 Q^{2}}}
$$

Note this contains magnitude and direction information
For high Q

$$
\tilde{\mathrm{S}}_{\mathrm{R}_{1}}^{\mathrm{p}}=\frac{\mathrm{Q} \pm \frac{1}{2} \sqrt{-4 \mathrm{Q}^{2}}}{ \pm \sqrt{-4 \mathrm{Q}^{2}}}=\frac{\mathrm{Q} \pm j Q}{ \pm j 2 Q}=\frac{1 \pm j}{ \pm j 2}=\frac{\mathrm{j} \pm 1}{ \pm 2}=\frac{1}{2} \pm \frac{1}{2} j
$$

$\Delta p_{i} \cong p_{i} \left\lvert\, \tilde{S}_{x}^{p_{i}} \frac{\Delta x}{x}\right.$

$$
\Delta \mathrm{p}_{\mathrm{i}} \cong \omega_{0}(0.5 \pm 0.5 j) \frac{\Delta \mathrm{R}_{1}}{\mathrm{R}_{1}}
$$

Example: Determine $\widetilde{S}_{R_{1}}^{p_{i}}$ for the +KRC Lowpass Filter for equal R, equal C

$$
\tilde{S}_{x}^{p_{i}}=\frac{x}{\left|p_{i}\right|} \frac{\partial p_{i}}{\partial x}
$$

For equal R, equal C
For high Q

$$
\Delta \mathrm{p}_{\mathrm{i}} \cong \omega_{0}(0.5 \pm 0.5 j) \frac{\Delta \mathrm{R}_{1}}{\mathrm{R}_{1}}
$$

Could we have assumed equal R equal C before calculation?
No! Analysis would not apply (not bilinear)
Results would obscure effects of variations in individual components Was this a lot of work for such a simple result?

Yes! But it is parametric and still only took maybe 20 minutes But it needs to be done only once for this structure Can do for each of the elements
What is the value of this result?
Understand how components affect performance of this circuit
Compare performance of different circuits for architecture selection

Transfer Function Sensitivities

$$
\begin{aligned}
& S_{x}^{T(i)}=S_{x}^{T(i)}+j 0 S_{x}^{\infty} \\
& \text { where } \\
& \theta=\angle T(j \omega) \\
& S_{x}^{T(i)}=\operatorname{Re}\left(\mathbf{S}_{x}^{T(1)}\right) \\
& S_{x}^{\rho}=\frac{1}{\theta}=\frac{\operatorname{lm}\left(\mathbf{S}_{x}^{T(i)}\right)}{T(i)}
\end{aligned}
$$

Transfer Function Sensitivities

$$
\begin{aligned}
& \text { If } \mathrm{T}(\mathrm{~s}) \text { is expressed as } \quad \mathrm{T}(\mathrm{~s})=\frac{\sum_{i=0}^{m} \mathrm{a}^{\prime} \mathrm{s}^{\prime}}{\sum_{\mathrm{i}=0}^{n} \mathrm{~b} \mathrm{~s}^{\prime}}=\frac{\mathrm{N}(\mathrm{~s})}{\mathrm{D}(\mathrm{~s})} \\
& \text { then } \quad \mathrm{S}_{\mathrm{x}}^{\mathrm{T}(\mathrm{~s})}=\frac{\sum_{i=0}^{m} \mathrm{a}_{\mathrm{i}} \mathrm{~s}^{\mathrm{i}} \mathbf{S}_{\mathrm{x}}^{a_{i}}}{\mathrm{~N}(\mathbf{s})}-\frac{\sum_{i=0}^{n} \mathrm{~b}_{\mathrm{i}} \mathrm{~s}^{\mathrm{i}} \mathbf{S}_{\mathrm{x}}^{b_{i}}}{\mathrm{D}(\mathbf{s})}
\end{aligned}
$$

If $T(s)$ is expressed as $T(s)=\frac{N_{0}(s)+x N_{1}(s)}{D_{0}(s)+x D_{1}(s)}$

$$
S_{x}^{\top(s)}=\frac{x\left[D_{0}(s) N_{1}(s)-N_{0}(s) D_{1}(s)\right]}{\left(N_{0}(s)+x N_{1}(s)\right)\left(D_{0}(s)+x D_{1}(s)\right)}
$$

Band-edge Sensitivities

The band edge of a filter is often of interest. A closed-form expression for the band-edge of a filter may not be attainable and often the band-edges are distinct from the ω_{0} of the poles. But the sensitivity of the band-edges to a parameter x is often of interest.

Want

$$
\mathrm{S}_{\mathrm{x}}^{\omega_{\mathrm{c}}}=\frac{\partial \omega_{\mathrm{C}}}{\partial \mathrm{x}} \bullet \frac{\mathrm{x}}{\omega_{\mathrm{c}}}
$$

Band-edge Sensitivities

Theorem: The sensitivity of the band-edge of a filter is given by the expression

Band-edge Sensitivities

Proof:

Observe

$$
\begin{gathered}
\frac{\partial|T(j \omega)|}{\partial \omega} \cong \frac{\Delta|T(j \omega)|}{\Delta \omega} \\
\frac{\partial|T(j \omega)|}{\partial \omega} \cong \frac{\Delta|T(j \omega)|}{\Delta x} \bullet \frac{\Delta x}{\Delta \omega} \cong \frac{\frac{\partial|T(j \omega)|}{\partial x}}{\frac{\partial \omega}{\partial x}}
\end{gathered}
$$

Band-edge Sensitivities

$$
\frac{\partial|T(j \omega)|}{\partial \omega} \cong \frac{\Delta|T(j \omega)|}{\Delta x} \bullet \frac{\Delta x}{\Delta \omega} \cong \frac{\frac{\partial|T(j \omega)|}{\partial x}}{\frac{\partial \omega}{\partial x}}
$$

$$
\begin{gathered}
\frac{\partial \omega}{\partial x} \cong \frac{\frac{\partial|T(j \omega)|}{\partial x}}{\frac{\partial|T(j \omega)|}{\partial \omega}} \\
\frac{\partial \omega}{\partial x} \cong \frac{\frac{\partial|T(j \omega)|}{\partial x} \bullet \frac{x}{\partial T(j \omega) \mid}\left(\frac{\omega}{x}\right)}{\partial \omega} \bullet \frac{\omega}{|T(j \omega)|} \\
\frac{\partial \omega}{\partial x} \bullet\left(\frac{x}{\omega}\right) \cong \frac{\frac{\partial|T(j \omega)|}{\partial x}}{\frac{\partial|T(j \omega)|}{\partial \omega} \bullet \frac{x}{|T(j \omega)|}} \frac{\omega}{|T(j \omega)|}
\end{gathered}
$$

$$
S_{x}^{\omega}=\frac{S_{x}^{T(\omega)}}{S_{\omega}^{T(\omega)} \mid}
$$

Sensitivity Comparisons

Consider 5 second-order lowpass filters
(all can realize same $\mathrm{T}(\mathrm{s})$ within a gain factor)

Passive RLC
(a)

Bridged-T Feedback (c)

(b)

Two-Integrator Loop

Sensitivity Comparisons

Consider 5 second-order lowpass filters
(all can realize same $\mathrm{T}(\mathrm{s})$ within a gain factor)

(e)

For all 5 structures, will have same transfer function within a gain factor

$$
T(s)=\frac{K \omega_{0}^{2}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}}
$$

a) - Passive RLC

$$
\begin{aligned}
& T(s)=\frac{V_{\text {out }}}{V_{\text {IN }}}=\frac{1 / L C}{s^{2}+s \frac{R}{L}+1 / L C} \\
& \omega_{0}=\sqrt{\frac{1}{L C}} \quad Q=\frac{1}{R} \sqrt{\frac{L}{C}}
\end{aligned}
$$

b) +KRP (a Sallen and Key filter)

$$
\begin{gathered}
T(s)=\frac{\overline{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\left(\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}}\right)\left(\sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}+\sqrt{\frac{R_{2} C_{2}}{R_{1} C_{1}}}+\sqrt{\frac{R_{1} C_{2}}{R_{2} C_{1}}}-K \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}\right)\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \\
\left.\omega_{0}=\sqrt{\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \quad Q=\sqrt{\left(\sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}+\sqrt{\frac{R_{2} C_{2}}{R_{1} C_{1}}}+\sqrt{\frac{R_{1} C_{2}}{R_{2} C_{1}}}-K \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}\right.}\right)
\end{gathered}
$$

Case b1 : Equal R, Equal C

$$
\begin{aligned}
& R_{1}=R_{2}=R \quad C_{1}=C_{2}=C \\
& \omega_{0}=\frac{1}{R C} \quad K=3-\frac{1}{Q}
\end{aligned}
$$

$$
T(s)=\frac{K \omega_{0}^{2}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}}
$$

Case b2 : Equal R, K=1

$$
R_{1}=R_{2}=R \quad Q=\frac{1}{2} \sqrt{\frac{C_{1}}{C_{2}}}
$$

c) Bridged T Feedback

$$
\begin{gathered}
T(s)=\frac{\frac{1}{R_{1} R_{3} C_{1} C_{2}}}{s^{2}+s\left[\left(\sqrt{\frac{C_{2}}{C_{1}}}\right)\left(\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}}\right)\left(\sqrt{\frac{R_{1}}{R_{3}}}+\sqrt{\frac{R_{2}}{R_{1}}}+\frac{\sqrt{R_{1} R_{2}}}{R_{3}}\right)\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \\
\left.\omega_{0}=\sqrt{\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \quad Q=\frac{1}{\left(\sqrt{\frac{C_{2}}{C_{1}}}\right)\left(\sqrt{\frac{R_{1}}{R_{3}}}+\sqrt{\frac{R_{2}}{R_{1}}}+\frac{\sqrt{R_{1} R_{2}}}{R_{3}}\right.}\right)
\end{gathered}
$$

If $R_{1}=R_{2}=R_{3}=R$ and $C_{2}=9 Q^{2} C_{1}$

$$
T(s)=\frac{\frac{1}{9 Q^{2} R^{2} C_{1}^{2}}}{s^{2}+s\left[\left(\frac{1}{3 Q^{2} R C_{1}}\right)\right]+\frac{1}{9 Q^{2} R^{2} C_{1}^{2}}}
$$

d) 2 integrator loop

For: $\begin{array}{r}R_{0}=R_{1}=R_{2}=R \quad C_{1}=C_{2}=C \\ T(s)=-\frac{1}{s^{2}+s\left(\frac{1}{R_{Q} C}\right)+\frac{1}{R^{2} C^{2}}}\end{array}$

$$
\mathrm{R}_{\mathrm{Q}}=\mathrm{QR}
$$

$$
\omega_{0}=\frac{1}{R C}
$$

d) - KRC
 (a Sallen and Key filter)

$$
\begin{aligned}
& T(s)=-\frac{\overline{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\left(1+\frac{R_{1}}{R_{3}}\right)\left(\frac{1}{R_{1} C_{1}}\right)+\left(1+\frac{C_{2}}{C_{1}}\right)\left(\frac{1}{R_{2} C_{2}}\right)+\left(\frac{1}{R_{4} C_{2}}\right)\right]+\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+R_{2} / R_{3}+R_{2} / R_{1}\right)}{R_{1} R_{2} C_{1} C_{2}}} \\
& \omega_{0}=\sqrt{\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+R_{2} / R_{3}+R_{2} / R_{1}\right)}{R_{1} R_{2} C_{1} C_{2}}} \quad Q=\frac{\sqrt{\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+R_{2} / R_{3}+R_{2} / R_{1}\right)}{R_{1} R_{2} C_{1} C_{2}}}}{\left(1+\frac{R_{1}}{R_{3}}\right)\left(\frac{1}{R_{1} C_{1}}\right)+\left(1+\frac{C_{2}}{C_{1}}\right)\left(\frac{1}{R_{2} C_{2}}\right)+\left(\frac{1}{R_{4} C_{2}}\right)}
\end{aligned}
$$

$$
\text { Often } R_{1}=R_{2}=R_{3}=R_{4}=R, C_{1}=C_{2}=C
$$

$$
Q=\frac{\sqrt{5+K_{0}}}{5}
$$

How do these five circuits compare?

a) From a passive sensitivity viewpoint?

- If Q is small
- If Q is large
b) From an active sensitivity viewpoint?
- If Q is small
- If Q is large
- If $\mathrm{T} \omega_{0}$ is large

Comparison: Calculate all ω_{0} and Q sensitivities
Consider passive sensitivities first
a) - Passive RLC

$$
\begin{aligned}
& \mathrm{S}_{R}^{a_{0}}=0 \\
& \mathrm{~S}_{L}^{a_{0}}=-\frac{1}{2} \\
& \mathrm{~S}_{C}^{a_{0}}=-\frac{1}{2} \\
& \mathrm{~S}_{R}^{Q}=-1 \\
& \mathrm{~S}_{C}^{o}=-\frac{1}{2} \\
& \mathrm{~S}_{L}^{o}=\frac{1}{2}
\end{aligned}
$$

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

$$
\omega_{0}=\sqrt{\frac{1}{\mathrm{LC}}}
$$

Case b1: +KRC Equal R, Equal C

$$
\begin{array}{ll}
\quad \omega_{0}=\sqrt{\frac{1}{R_{1} C_{2} C_{1} C_{2}}} & \left.Q=\frac{1}{\left(\sqrt{R_{2} C_{1} C_{2}}+\sqrt{R_{R_{1} C_{2} C_{1}}^{R_{1}}}+\sqrt{R_{2} C_{2} C_{1}}-K \sqrt{R_{2} C_{1} C_{1}}\right.}\right) \\
\mathrm{S}_{R_{1}}^{\omega_{0}}=\mathrm{S}_{R_{2}}^{\omega_{0}}=\mathrm{S}_{C_{1}}^{\omega_{0}}=\mathrm{S}_{C_{2}}^{\omega_{0}}=-\frac{1}{2} \quad \mathrm{~S}_{K}^{\omega_{0}}=0 \\
\mathrm{~S}_{R_{1}}^{Q}=Q-\frac{1}{2} & Q=\frac{1}{3-K} \\
\mathrm{~S}_{R_{2}}^{Q}=-Q+\frac{1}{2} & \omega_{0}=\frac{1}{R C} \\
\mathrm{~S}_{C_{1}}^{Q}=2 Q-\frac{1}{2} & \\
\mathrm{~S}_{C_{2}}^{Q}=-2 Q+\frac{1}{2} & \\
\mathrm{~S}_{K}^{Q}=3 Q-1 &
\end{array}
$$

$I \& Q_{N}=10$, whot happens it
R_{1} inereaces by 1% ?

$$
\frac{\Delta Q}{Q}=S_{R_{1}}^{Q} \cdot \frac{-R_{1}}{R_{1}}=(Q-1 / 2)(.01)=.095
$$

$\therefore Q$ chaics by 9.5%

$$
\begin{aligned}
& \frac{-R_{1}}{R_{1}}=0.1 \\
& \quad \frac{\Delta Q}{Q}=S_{R_{1}}^{Q} \cdot \frac{\Delta R_{1}}{P_{1}}=(9,5)(1)=.95
\end{aligned}
$$

$\therefore Q$ chans bs 95%

Actral: $10 \rightarrow 11.04 \quad$ for $\frac{\Delta R}{R}=.01$
$10 \rightarrow 105 \quad$ for $\frac{R}{R}=0.1$

Case b2 : +KRC Equal R, K=1

$$
\left.\omega_{0}=\sqrt{\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \quad \mathrm{Q}=\frac{1}{\left(\sqrt{\frac{\mathrm{R}_{1} \mathrm{C}_{1}}{\mathrm{R}_{2} \mathrm{C}_{2}}}+\sqrt{\frac{\mathrm{R}_{2} \mathrm{C}_{2}}{\mathrm{R}_{1} \mathrm{C}_{1}}}+\sqrt{\frac{\mathrm{R}_{1} \mathrm{C}_{2}}{\mathrm{R}_{2} \mathrm{C}_{1}}}-K \sqrt{\frac{\mathrm{R}_{1} \mathrm{C}_{1}}{\mathrm{R}_{2} \mathrm{C}_{2}}}\right.}\right)
$$

$$
\mathbf{S}_{R_{1}}^{\omega_{0}}=\mathbf{S}_{R_{2}}^{\omega_{0}}=\mathbf{S}_{C_{1}}^{\omega_{0}}=\mathbf{S}_{C_{2}}^{\omega_{0}}=-\frac{1}{2}
$$

$$
\mathrm{S}_{K}^{\omega_{0}}=0
$$

$$
S_{R_{1}}^{Q}=0
$$

$$
S_{R_{2}}^{Q}=0
$$

$$
S_{C_{1}}^{Q}=\frac{1}{2}
$$

$$
\omega_{0}=\frac{1}{R C}
$$

$$
S_{C_{2}}^{Q}=-\frac{1}{2}
$$

$$
Q=\frac{1}{2} \sqrt{\frac{C_{1}}{C_{2}}}
$$

$$
\mathrm{S}_{K}^{Q}=2 Q^{2}
$$

c) Bridged T Feedback

$$
\left.\omega_{0}=\sqrt{\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \quad Q=\frac{1}{\left(\sqrt{\frac{C_{2}}{C_{1}}}\right)\left(\sqrt{\frac{R_{1}}{R_{3}}}+\sqrt{\frac{R_{2}}{R_{1}}}+\frac{\sqrt{R_{1} R_{2}}}{R_{3}}\right.}\right)
$$

For $R_{1}=R_{2}=R_{3}=R$

$$
\begin{array}{ll}
\mathrm{S}_{R_{1}}^{\omega_{0}}=\mathrm{S}_{R_{2}}^{\omega_{0}}=\mathrm{S}_{C_{1}}^{\omega_{0}}=\mathrm{S}_{C_{2}}^{\omega_{0}}=-\frac{1}{2} \quad \mathrm{~S}_{R_{3}}^{\omega_{0}}=0 & \\
\mathrm{~S}_{R_{1}}^{Q}=-\frac{1}{6} & \omega_{0}=\frac{3 Q}{R C_{1}} \\
\mathrm{~S}_{R_{2}}^{Q}=-\frac{1}{6} & \\
\mathrm{~S}_{R_{3}}^{Q}=\frac{1}{3} & \mathrm{Q}=\frac{1}{3} \sqrt{\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}} \\
\mathrm{~S}_{C_{1}}^{Q}=-\frac{1}{2} & \\
\mathrm{~S}_{C_{2}}^{Q}=\frac{1}{2} &
\end{array}
$$

d) 2 integrator loop

$$
\omega_{0}=\sqrt{\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}} \cdot \frac{1}{\mathrm{R}_{0} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}} \quad \mathrm{Q}=\frac{\mathrm{R}_{\mathrm{Q}}}{\sqrt{\mathrm{R}_{0} \mathrm{R}_{2}}} \sqrt{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}}
$$

For: $\quad R_{0}=R_{1}=R_{2}=R$

$$
\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C} \quad \mathrm{R}_{3}=\mathrm{R}_{4}
$$

$$
\begin{aligned}
& \mathrm{S}_{R_{1}}^{\omega_{0}}=\mathrm{S}_{R_{2}}^{\omega_{0}}=\mathrm{S}_{R_{3}}^{\omega_{0}}=\mathrm{S}_{C_{1}}^{\omega_{0}}=\mathrm{S}_{C_{2}}^{\omega_{0}}=-\frac{1}{2} \quad \mathrm{~S}_{R_{4}}^{\omega_{0}}=\frac{1}{2} \\
& \mathrm{~S}_{R_{1}}^{Q}=\mathrm{S}_{R_{2}}^{Q}=\mathrm{S}_{R_{3}}^{Q}=\mathrm{S}_{C_{1}}^{Q}=-\frac{1}{2} \\
& \mathrm{~S}_{R_{4}}^{Q}=\mathrm{S}_{C_{2}}^{Q}=\frac{1}{2} \\
& \mathrm{~S}_{R_{Q}}^{Q}=1 \\
& \mathrm{~S}_{R_{0}}^{Q}=0
\end{aligned}
$$

d) -KRC passive sensitivities
$\omega_{0}=\sqrt{\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+R_{2} / R_{3}+R_{2} / R_{1}\right)}{R_{1} R_{2} C_{1} C_{2}}}$

$$
Q=\frac{\sqrt{\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+R_{2} / R_{3}+R_{2} / R_{1}\right)}{R_{1} R_{2} C_{1} C_{2}}}}{\left(1+\frac{R_{1}}{R_{3}}\right)\left(\frac{1}{R_{1} C_{1}}\right)+\left(1+\frac{C_{2}}{C_{1}}\right)\left(\frac{1}{R_{2} C_{2}}\right)+\left(\frac{1}{R_{4} C_{2}}\right)}
$$

$$
\text { For } R_{1}=R_{2}=R_{3}=R_{4}=R, C_{1}=C_{2}=C \quad Q=\frac{\sqrt{5+K_{0}}}{5} \quad \omega_{0}=\frac{\sqrt{5+K}}{\mathrm{RC}}
$$

$$
\begin{array}{lll}
\mathrm{S}_{R_{1}}^{\omega_{0}}=-\frac{1}{25 Q^{2}} & \mathrm{~S}_{R_{2}}^{\omega_{0}}=-\frac{1}{2}+\frac{1}{25 Q^{2}} & \mathrm{~S}_{R_{3}}^{\omega_{0}}=-\frac{1}{2}+\frac{3}{50 Q^{2}} \\
\mathrm{~S}_{C_{1}}^{\omega_{0}}=\mathrm{S}_{C_{2}}^{\omega_{0}}=-\frac{1}{2} & \mathrm{~S}_{R_{4}}^{\omega_{0}}=-\frac{3}{50 Q^{2}} & \mathrm{~S}_{K}^{\omega_{0}}=\frac{1}{2}+\frac{1}{10 Q^{2}} \\
\mathrm{~S}_{R_{1}}^{Q}=\frac{1}{5}-\frac{1}{25 Q^{2}} & \mathrm{~S}_{R_{2}}^{Q}=-\frac{1}{10}+\frac{1}{25 Q^{2}} & \mathrm{~S}_{R_{3}}^{Q}=-\frac{3}{10}+\frac{3}{50 Q^{2}} \\
\mathrm{~S}_{R_{4}}^{Q}=\frac{1}{5}-\frac{3}{50 Q^{2}} & \mathrm{~S}_{C_{2}}^{Q}=-\frac{1}{10} & \mathrm{~S}_{C_{1}}^{Q}=\frac{1}{10}
\end{array} \quad \mathrm{~S}_{K}^{Q}=\frac{1}{2}-\frac{1}{10 Q^{2}} .
$$

Passive Sensitivity Comparisons

$$
\left|S_{x}^{\omega_{0}}\right|
$$

$$
\left|S_{x}^{Q}\right|
$$

Passive RLC

$$
\leq 1 / 2
$$

$$
1,1 / 2
$$

+KRC

Equal R, Equal C	$(K=3-1 / Q)$	$0,1 / 2$
Equal $R, K=1$	$\left(C_{1}=4 Q^{2} C_{2}\right)$	$0,1 / 2$

Bridged-T Feedback
0,1/2
1/3,1/2, 1/6

Two-Integrator Loop
0,1/2
1,1/2, 0
-KRC
less than or equal to $\mathbf{1 / 2}$
less than or equal to $\mathbf{1 / 2}$
Substantial Differences Between (or in) Architectures

How do active sensitivities compare?

$$
S_{t}^{\omega_{0}}=? \quad S_{t}^{Q}=?
$$

Recall $S_{x}^{f}=\frac{\partial f}{\partial x} \frac{x}{f}$
So $\frac{\Delta f}{f} \simeq \frac{\Delta x}{x} S_{x}^{f}$
bat if x is ideally O, not useful

$$
\begin{aligned}
& \Delta_{x}^{f}=\frac{\partial f}{\partial x} \\
& \frac{\Delta f}{f} \simeq s_{x}^{f} \frac{\Delta x}{f}
\end{aligned}
$$

Where we are at with sensitivity analysis:

Considered a group of five second-order filters

Passive Sensitivity Analysis

- Closed form expressions were obtained for ω_{0} and Q
- Tedious but straightforward calculations provided passive sensitivities directly from the closed form expressions
Active Sensitivity Analysis
- Closed form expressions for ω_{0} and Q are very difficult or impossible to obtain \because

If we consider higher-order filters

Passive Sensitivity Analysis

- Closed form expressions for ω_{0} and Q are very difficult or impossible to obtain for many useful structures
Active Sensitivity Analysis
- Closed form expressions for ω_{0} and Q are very difficult or impossible to obtain
Need some better method for obtaining sensitivities when closed-form expressions are difficult or impractical to obtain or manipulate !!

Relationship between pole sensitivities and ω_{0} and Q sensitivities

$$
\begin{aligned}
& p=-\alpha+j \beta \\
& D_{2}(s)=(s-p)\left(s-p^{*}\right) \\
& D_{2}(s)=(s+\alpha-j \beta)(s+\alpha+j \beta) \\
& D_{2}(s)=s^{2}+s(2 \alpha)+\left(\alpha^{2}+\beta^{2}\right) \\
& D_{2}(s)=s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}
\end{aligned}
$$

Relationship between active pole sensitivities and ω_{0} and Q sensitivities

Define $D(s)=D_{0}(s)+t D_{1}(s) \quad$ (from bilinear form of $T(s)$)
Recall: $\quad s_{\tau}^{p}=\frac{-\mathrm{D}_{1}(\mathrm{p})}{\left.\frac{\partial \mathrm{D}(\mathrm{s})}{\partial \mathrm{s}}\right|_{\mathrm{s}=\mathrm{p}, \mathrm{T}=0}}$
Theorem: $\quad \Delta p \cong \tau \boldsymbol{s}_{\tau}{ }^{p}$
Theorem: $\quad \Delta \alpha \cong \tau \operatorname{Re}\left(s_{\tau}^{p}\right)$
$\Delta \beta \cong \tau \operatorname{Im}\left(s_{t}^{\circ}\right)$
Theorem:

$$
\frac{\Delta \omega_{0}}{\omega_{0}} \cong \frac{1}{2 Q} \frac{\Delta \alpha}{\omega_{0}}+\sqrt{1-\frac{1}{4 Q^{2}}} \frac{\Delta \beta}{\omega_{0}} \quad \frac{\Delta Q}{Q} \cong-2 Q\left(1-\frac{1}{4 Q^{2}}\right) \frac{\Delta \alpha}{\omega_{0}}+\sqrt{1-\frac{1}{4 Q^{2}}} \frac{\Delta \beta}{\omega_{0}}
$$

Claim: These theorems, with straightforward modification, also apply to other parameters ($\mathrm{R}, \mathrm{C}, \mathrm{L}, \mathrm{K}, \ldots$) where, $\mathrm{D}_{0}(\mathrm{~s})$ and $\mathrm{D}_{1}(\mathrm{~s})$ will change since the parameter is different

Active Sensitivities

$+\mathrm{KRC}$

Equal-R, Equat C C

$$
\begin{aligned}
& \omega_{*}=\frac{1}{R C}, \quad Q-\frac{1}{3-K_{0}} \\
& \frac{\left(3-\frac{1}{Q}\right) \omega_{0}^{2}}{V_{t}}=-\quad\left(\omega_{0} \alpha \frac{\omega_{0}}{2 Q}\right) \\
& \left.s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}+\frac{\left(3-\frac{1}{Q}\right)}{G \bar{B}}\right) s\left(s^{2}+s 3 \omega_{*}+\omega_{2}^{2}\right) \\
& -\frac{\Delta_{0}}{\omega_{0}} \simeq \frac{1}{2 Q}\left(3-\frac{1}{Q}\right)^{2} \frac{\omega_{0}}{G B}, \quad \frac{\Delta \beta}{\omega_{e}} \cong-\frac{1}{2}\left(3-\frac{1}{Q}\right)^{2} \frac{\left(1-\frac{1}{2 Q^{2}}\right)}{\sqrt{1-\frac{1}{4 Q^{2}}}} \frac{\omega_{0}}{G B} \\
& \frac{\Delta \omega_{0}}{\omega_{0}} \cong-\frac{1}{2}\left(3-\frac{1}{Q}\right)^{2} \frac{\omega_{c}}{G B}, \quad \frac{\Delta Q}{Q} \cong \frac{1}{2}\left(3-\frac{1}{Q}\right)^{2} \frac{\omega_{0}}{G B}
\end{aligned}
$$

Unity-guin, Equal-R

$$
\begin{aligned}
& \omega_{*}=\frac{1}{R \sqrt{C_{1} C_{x}}}, \quad Q=\frac{1}{2} \sqrt{\frac{C_{1}}{C_{2}}} \\
& \frac{V_{*}}{V_{1}}=\frac{\omega_{0}^{2}}{s^{2}+3 \frac{\omega_{0}}{Q}+\omega_{e}^{2}+\frac{s}{\mathrm{~GB}}\left[s^{2}+5 \omega_{*}\left(2 Q+\frac{1}{Q}\right)+\omega_{0}^{2}\right]} \quad\left(\omega_{4} \& \frac{\omega_{e}}{2 Q}\right) \\
& -\frac{\Delta_{a}}{\omega_{*}} \cong \frac{\omega_{0}}{\mathrm{~GB}}, \quad \frac{\Delta \beta}{\omega_{0}} \cong-Q \frac{\left(1-\frac{1}{2 Q^{3}}\right)}{\sqrt{1-\frac{1}{4 Q^{2}}} \frac{\omega_{2}}{\mathrm{~GB}}} \\
& \frac{\Delta \omega_{*}}{\omega_{0}} \cong-Q \frac{\omega_{0}}{\mathrm{~GB}}, \quad \frac{\Delta Q}{Q} \cong Q \frac{\omega_{*}}{\mathrm{~GB}}
\end{aligned}
$$

where
$s_{n}=\frac{s}{\omega_{0}}, \quad \mathrm{~GB}_{n}=\frac{\mathrm{GB}}{\omega_{o}}$.

Active Sensitivities

$+K R C$

4 Fig. 10-5a Plot of upper half-plane root of
$s_{n}^{2}+s^{2}\left(3+\frac{Q \mathrm{~GB}}{3 Q-1}\right)+s .\left(1+\frac{\mathrm{GB}_{2}}{3 Q-1}\right)+\frac{Q \mathrm{~GB}}{3 Q-1}=0 \quad$ (Equal- R, equal- $-C$)

4 Fig. 10-5b Plot of upper half plane root of
$s_{s}^{2}+s_{n}^{2}\left(2 Q+\frac{1}{Q}+G B_{n}\right)+s_{*}\left(1+\frac{G B_{n}}{Q}\right)+G B_{*}-0 \quad$ (Unity-gain, equal-R)

Active Sensitivities

Bridged T Feedback

Table 10-3 Infinite-pain Realization
(see Fig. 10-10b)

Equal R

$$
\begin{aligned}
& \omega_{*}=\frac{1}{R \sqrt{C_{1} C_{2}}} ; \quad Q=\frac{1}{3} \sqrt{\frac{C_{1}}{C_{4}}} \\
& \frac{V_{t}}{V_{i}}=-\frac{\omega_{0}^{2}}{s^{2}+s \frac{\omega_{s}}{Q}+\omega_{s}^{2}+\frac{s}{Q B}\left[s^{2}+3 \omega_{\infty}\left(30+\frac{1}{Q}\right)+2 \alpha_{n}^{2}\right]} \quad\left(\omega_{\infty} \alpha \frac{\omega_{n}}{2 Q}\right) \\
& -\frac{\Delta a}{\omega_{e}} \frac{\omega_{*}}{G B}, \quad \frac{\Delta \theta}{\omega_{n}} \#-\frac{1}{2} \frac{3 Q-\frac{1}{Q}}{\sqrt{1-\frac{1}{4 Q^{2}}}} \frac{\omega_{b}}{G B} \\
& \frac{\Delta \omega_{4}}{\partial \omega_{+}}-\frac{3 Q}{2} \frac{\omega_{4}}{G B} \quad \frac{A Q}{Q} \equiv \frac{Q}{2} \frac{\omega_{4}}{Q B}
\end{aligned}
$$

Active Sensitivities

Fig 10-12 Plot of apper half-plane root of

$$
3+5\left(3 Q+\frac{1}{Q}+G B_{n}\right)+s_{n}\left(2+\frac{G B}{Q}\right)+G B_{n}=0
$$

Active Sensitivities

Two integrator loop architecture

$$
u_{4}=\frac{1}{N}, \quad Q=\frac{F_{q}}{R}
$$

$$
\frac{V_{0}}{V_{1}}=\frac{\omega_{2}\left(\frac{2}{\square B}+1\right)}{x^{2}+s \frac{\omega_{4}}{2}+\omega_{0}^{2}+\frac{1}{4 B}\left(4 s\left[s^{2}+\operatorname{su}\left(\frac{1}{2}+\frac{1}{Q}\right)+\frac{b_{4}^{2}}{4 Q}\right]\right)} \quad\left(0,4 \frac{4,}{2 Q}\right)
$$

$$
-\frac{\Delta p}{\omega_{0}} \approx 2\left(1+\frac{1}{4 Q}\right) \frac{\omega_{q}}{Q B}, \quad \frac{\Delta \beta}{\omega_{i}}=-\frac{\left(1-\frac{1}{Q}-\frac{1}{4 Q^{2}}\right)}{\sqrt{1-\frac{1}{4 Q^{2}}} \frac{\omega_{0}}{\square B}}
$$

$$
\frac{A n}{\omega_{m}}=-\frac{\Delta}{D}, \quad \frac{A Q}{D} \approx 4 Q \frac{b_{n}}{G B}
$$

Active Sensitivities

Two integrator loop architecture

Fite 10-17 Plot of upper half-plane root of

$$
x^{3}+2 \pi\left(\frac{1}{2}+\frac{1}{Q}+\frac{G B}{4}\right)+3 \frac{1}{4 Q}\left(1+G B_{0}\right)+\frac{G B}{4}=0
$$

Active Sensitivities

Equal-R, Equal-C
$\omega_{0}=\frac{\sqrt{ } 5 \overline{+K_{0}}}{\mathrm{RC}}, \quad Q=\frac{\sqrt{5+K_{0}}}{5}$
$\frac{V_{o}}{V_{i}}=-\frac{\omega_{o}^{2}\left(1-\frac{1}{5 Q^{2}}\right)}{s^{2}+s \frac{\omega_{o}}{Q}+\omega_{0}^{2}+\frac{s}{\mathrm{~GB}}\left[s^{2}\left(25 Q^{2}-4\right)+s \omega_{0}\left(20 Q-\frac{3}{Q}\right)+\left(2-\frac{1}{5 Q^{2}}\right) \omega_{o}^{2}\right]}$
$\left(\omega_{a} \ll \frac{\omega_{o}}{2 Q}\right)$
$-\frac{\Delta \alpha}{\omega_{o}} \cong \frac{25 Q^{2}}{2}\left(1-\frac{1}{5 Q^{2}}\right)\left(1-\frac{6}{25 Q^{2}}\right) \frac{\omega_{o}}{\mathrm{~GB}}, \quad \frac{\Delta \beta}{\omega_{o}} \cong \frac{35 Q}{4} \frac{\left(1-\frac{1}{5 Q^{2}}\right)\left(1-\frac{6}{35 Q^{2}}\right)}{\sqrt{1-\frac{1}{4 Q^{2}}}} \frac{\omega_{o}}{\mathrm{~GB}}$
$\frac{\Delta \omega_{o}}{\omega_{o}} \cong \frac{5 Q}{2}\left(1-\frac{1}{5 Q^{2}}\right) \frac{\omega_{o}}{\mathrm{~GB}}, \quad \frac{\Delta Q}{Q} \cong 25 Q^{3}\left(1-\frac{1}{5 Q^{2}}\right)\left(1-\frac{7}{5 Q^{2}}\right) \frac{\omega_{o}}{\mathrm{~GB}}$

Active Sensitivities

- KRC

Active Sensitivity Comparisons

$\frac{\Delta \omega_{0}}{\omega_{0}}$
NA

$$
-\frac{1}{2}\left(3-\frac{1}{Q}\right)^{2} \tau \omega_{0}
$$

$-Q \tau \omega_{0}$
$-\frac{3}{2} \mathrm{Q} \tau \omega_{0}$
$-\tau \omega_{0}$
$4 Q \tau \omega_{0}$
Two-Integrator Loop
-KRC
$\frac{5}{2} Q \tau \omega_{0}$ $25 Q^{3} \tau \omega_{0}$

Are these passive sensitivities acceptable?

$$
\left|S_{x}^{\omega_{0}}\right|
$$

$\left|S_{X}^{Q}\right|$

Passive RLC

$$
\leq 1 / 2
$$

1,1/2
+KRC

Equal R, Equal $C \quad(\mathrm{~K}=3-1 / \mathrm{Q})$	$0,1 / 2$	
Equal $R, K=1$	$\left(C_{1}=4 Q^{2} C_{2}\right)$	$0,1 / 2$

Q, 2Q, 3Q
$0,1 / 2,2 Q^{2}$

Bridged-T Feedback
0,1/2
1/3,1/2, 1/6

Two-Integrator Loop
$0,1 / 2$
1,1/2, 0

Are these active sensitivities acceptable? Active Sensitivity Comparisons

	$\Delta \omega_{0}$	$\Delta \mathrm{Q}$
Passive RLC	ω_{0}	Q
+KRC		
Equal R, Equal C ($\mathrm{K}=3-1 / \mathrm{Q}$)	$-\frac{1}{2}\left(3-\frac{1}{Q}\right)^{2} \tau \omega_{0}$	$\frac{1}{2}\left(3-\frac{1}{Q}\right)^{2} \tau \omega_{0}$
Equal R, $\mathrm{K}=1 \quad\left(\mathrm{C}_{1}=4 Q^{2} \mathrm{C}_{2}\right)$	$-\mathrm{Q} \tau \omega_{0}$	$\mathrm{Q} \tau \omega_{0}$
Bridged-T Feedback	$-\frac{3}{2} Q \tau \omega_{0}$	${ }_{2}^{1} \mathrm{Q} \tau \omega_{0}$
Two-Integrator Loop	$-\tau \omega_{0}$	$4 \mathrm{Q} \tau \omega_{0}$
-KRC	$\frac{5}{2} \mathrm{Q} \tau \omega_{0}$	$25 Q^{3} \tau \omega_{0}$

Are these sensitivities acceptable?

Passive Sensitivities:

$$
\frac{\Delta \omega_{0}}{\omega_{0}} \cong S_{x}^{\omega_{0}} \frac{\Delta x}{x}
$$

In integrated circuits, $\Delta \mathrm{R} / \mathrm{R}$ and $\Delta \mathrm{C} / \mathrm{C}$ due to process variations can be K 30% or larger due to process variations

Many applications require $\Delta \omega_{0} / \omega_{0}<.001$ or smaller and similar requirements on $\Delta Q / Q$
Even if sensitivity is around $1 / 2$ or 1 , variability is often orders of magnitude too large

Active Sensitivities:

All are proportional to $T \omega_{0}$
Some architectures much more sensitive than others
Can reduce $T \omega_{0}$ by making GB large but this is at the expense of increased power and even if power is not of concern, process presents fundamental limits on how large GB can be made

What can be done to address these problems?

1. Predistortion

Design circuit so that after component shift, correct pole locations are obtained

Predistortion is generally used in integrated circuits to remove the bias associated with inadequate amplifier bandwidth

Predistortion does not help with process variations of passive components
Tedious process after fabrication since depends on individual components
Temperature dependence may not track

Difficult to maintain over time and temperature
Over-ordering will adversely affect performance
Seldom will predistortion alone be adequate to obtain acceptable performance Bell Labs did to this in high-volume production (STAR Biquad)

What can be done to address these problems?

1. Predistortion

Design circuit so that after component shift, correct pole locations are obtained

Pole shift due to parametric variations (e.g. inadequate GB)

What can be done to address these problems?

1. Predistortion

Design circuit so that after component shift, correct pole locations are obtained

Pre-distortion concept

What can be done to address these problems?

1. Predistortion

Design circuit so that after component shift, correct pole locations are obtained

Over-ordering Limitations with Pre-distortion Parasitic Pole Affects Response
Predistortion almost always done even if benefits only modest
Not effective if significant deviations exist before predistortion

What can be done to address these problems?
 2. Trimming

a) Functional Trimming

- trim parameters of actual filter based upon measurements
- difficult to implement in many structures
- manageable for cascaded biquads
b) Deterministic Trimming (much preferred)
- Trim component values to their ideal value

Continuous-trims of resistors possible in some special processes
Continuous-trim of capacitors is more challenging
Link trimming of Rs or Cs is possible with either metal or switches

- If all components are ideal, the filter should also be ideal
R-trimming algorithms easy to implement
Limited to unidirectional trim
Trim generally done at wafer level for laser trimming, package for link trims
- Filter shifts occur due to stress in packaging and heat cycling
c) Master-slave reference control (depends upon matching in a process)
- Can be implemented in discrete or integrated structures
- Master typically frequency or period referenced
- Most effective in integrated form since good matching possible
- Widely used in integrated form

Stay Safe and Stay Healthy !

End of Lecture 22

